--- title: "theme_duke()" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{theme_duke()} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 8, fig.asp = 0.618 ) ``` This vignette is intended to demonstrate the breadth of `theme_duke()` and its various applications. Similar to the other functions within the `theme()`, this function can be applied to all visualizations made with ggplot2. # Plot Examples For these visualizations, we will use the `penguins` dataset from the **palmerpenguins** package. ```{r penguins, warning = FALSE} library(palmerpenguins) library(ggplot2) library(duke) ``` ## Scatter Plot ```{r scatter, warning = FALSE} p <- ggplot(penguins, aes(bill_length_mm, flipper_length_mm)) + geom_point(aes(colour = species)) + labs( title = "Bill Length vs. Flipper Length", caption = "There are three different species of penguins.", x = "Bill Length (mm)", y = "Flipper Length (mm)" ) p + theme_duke() ``` ## Bar Plot ```{r bar, warning = FALSE} p <- ggplot(penguins, aes(species)) + geom_bar(aes(fill = species)) + labs( title = "Species Count", caption = "There are three different species of penguins.", x = "Species", y = "Count" ) p + theme_duke() ``` ## Histogram ```{r hist, warning = FALSE} p <- ggplot(penguins, aes(body_mass_g)) + geom_histogram(aes(fill = species)) + labs( title = "Distribution of Penguin Body Mass", caption = "There are three different species of penguins.", x = "Body Mass (g)", y = "Count" ) p + theme_duke() ``` ## Box Plot ```{r box} p <- ggplot(penguins, aes(sex, body_mass_g)) + geom_boxplot() + labs( title = "Comparison of Body Mass By Sex", x = "Sex", y = "Body Mass (g)" ) p + theme_duke() ``` ## Density Plot ```{r density, warning = FALSE} p <- ggplot(penguins, aes(bill_depth_mm)) + geom_density() + labs( title = "Density of Penguin Bill Depth", x = "Bill Depth (mm)", y = "Densiy" ) p + theme_duke() ``` ## Jitter Plot ```{r jitter, warning = FALSE} p <- ggplot(penguins, aes(year, body_mass_g)) + geom_jitter() + labs( title = "Comparison of Body Mass By Year", x = "Year", y = "Body Mass (g)" ) p + theme_duke() ```