---
title: "theme_duke()"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{theme_duke()}
%\VignetteEncoding{UTF-8}
%\VignetteEngine{knitr::rmarkdown}
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 8,
fig.asp = 0.618
)
```
This vignette is intended to demonstrate the breadth of `theme_duke()` and its various applications.
Similar to the other functions within the `theme()`, this function can be applied to all visualizations made with ggplot2.
# Plot Examples
For these visualizations, we will use the `penguins` dataset from the **palmerpenguins** package.
```{r penguins, warning = FALSE}
library(palmerpenguins)
library(ggplot2)
library(duke)
```
## Scatter Plot
```{r scatter, warning = FALSE}
p <- ggplot(penguins, aes(bill_length_mm, flipper_length_mm)) +
geom_point(aes(colour = species)) +
labs(
title = "Bill Length vs. Flipper Length",
caption = "There are three different species of penguins.",
x = "Bill Length (mm)",
y = "Flipper Length (mm)"
)
p +
theme_duke()
```
## Bar Plot
```{r bar, warning = FALSE}
p <- ggplot(penguins, aes(species)) +
geom_bar(aes(fill = species)) +
labs(
title = "Species Count",
caption = "There are three different species of penguins.",
x = "Species",
y = "Count"
)
p +
theme_duke()
```
## Histogram
```{r hist, warning = FALSE}
p <- ggplot(penguins, aes(body_mass_g)) +
geom_histogram(aes(fill = species)) +
labs(
title = "Distribution of Penguin Body Mass",
caption = "There are three different species of penguins.",
x = "Body Mass (g)",
y = "Count"
)
p +
theme_duke()
```
## Box Plot
```{r box}
p <- ggplot(penguins, aes(sex, body_mass_g)) +
geom_boxplot() +
labs(
title = "Comparison of Body Mass By Sex",
x = "Sex",
y = "Body Mass (g)"
)
p +
theme_duke()
```
## Density Plot
```{r density, warning = FALSE}
p <- ggplot(penguins, aes(bill_depth_mm)) +
geom_density() +
labs(
title = "Density of Penguin Bill Depth",
x = "Bill Depth (mm)",
y = "Densiy"
)
p +
theme_duke()
```
## Jitter Plot
```{r jitter, warning = FALSE}
p <- ggplot(penguins, aes(year, body_mass_g)) +
geom_jitter() +
labs(
title = "Comparison of Body Mass By Year",
x = "Year",
y = "Body Mass (g)"
)
p +
theme_duke()
```